Quantum Morphisms Lecture 13: The Finale

Last Week
If U is the fundamental representation of $\operatorname{Qut}(G)$, then the following are equivalence relations:

1) $x \sim y$ if $u_{x y} \neq 0_{j}$
2) $\left(x, x^{\prime}\right) \sim_{2}\left(y, y^{\prime}\right)$ if $u_{x y} u_{x^{\prime} y^{\prime}} \neq \mathcal{D}$.

The equivalence classes are the orbits + orbitals of $Q_{u}+(G)$ respectively.

The orbits form an equitable partition.
The orbitals form a coherent configuration.

$$
\begin{aligned}
C_{q}^{G}(1,0) & :=\left\{\psi \in \mathbb{C}^{V(G)}: U \psi=\psi U^{\otimes 0}\right\}=\text { span of char. vecs. of orbits. } \\
C_{q}^{G}(1,1) & :=\left\{M \in \mathbb{C}^{V(G) x V(G)}: M U=U M\right\} \\
& =\text { span of the characteristic matrices of the orbitals }
\end{aligned}
$$

This is a coherent algebra.
Thus if $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in V(G) \times V(G)$ are in different classes of the coherent configuration of G, then $u_{x y} u_{x^{\prime} y^{\prime}}=0$

Theorem: Let $G+H$ be graphs. Then $G \cong \cong_{\text {qc }}$ if α only if there is a $Q P M$ sit. $A_{G} P=P A_{H}$.

Theorem: Let $G+H$ be connected graphs. Then $G \cong_{q L} H$ if + only if $\exists g \in V(G)+h \in V(H)$ in the same orbit of $\operatorname{Qut}(G \cup H)$.

Theorem: Let $\mathcal{A}_{G}+\mathcal{A}_{H}$ be the quantum orbital algebras of $G+H$ respectively. If $G \cong \cong_{c c} H$, then there is an isomorphism (of coherent algebras) $\phi: \mathcal{A}_{G} \rightarrow \mathcal{A}_{H}$ s.t. $\phi\left(A_{G}\right)=A_{H}$.

Corollary: Let $A_{G}+A_{H}$ be the coherent algebras of $G+H$ respectively. If $G \cong_{q c} H$, then there is an isomorphism $\phi: \Lambda_{G} \rightarrow A_{H}$ s.t. $\phi\left(A_{G}\right)=\phi\left(A_{H}\right)$.

Corollary: If $G \cong \cong_{q c} H$, then G and H are not distinguishable by the (2-dimensional)
Weisfeiler-Leman algorithm.

Today: We give a diagrammatic description of the intertwiners of $\operatorname{Qut}(G)$ in terms of bilabeled graphs. We will show that $G \cong_{q}{ }_{c} H$ if α only if $G+H$ admit the same number of homomorphisms from any planar graph.

The latter is a quantum analog of a classical theorem of Lovász: $G \cong H$ if + only if $G+H$ admit the same number of homomorphisms from any graph.

For a family of graphs F, let $G \cong \cong_{F} H$ denote $\operatorname{hom}(F, G)=\operatorname{hom}(F, H)$ for all $F \in) \approx$ where $\operatorname{hom}(F, G):=$ homomorphisms from F to G.

The family \mathcal{F}	The relation $\mathrm{G} \cong_{\mathcal{F}} \mathrm{H}$
All graphs	Isomorphism [Lovász 1967]
Cycles	Cospectrality (of adjacency matrices)
Cycles \& paths	Cospectral + cospectral complements
Trees	Fractional iso [Dvořák 2010; Dell, Grohe, Rattan 2018]
Treewidth $\leqslant \mathrm{k}$	Indistinguishable by k-WL [Dvořák 2010; DGR 2018]
Treedepth $\leqslant \mathrm{k}$	Ind. by FOL w/ counting of quantifier rank $\leqslant \mathrm{k}$ [Grohe 2020]
Planar graphs	Quantum isomorphism

Recall the following theorem:
Theorem (Chassaniol):

$$
\begin{gathered}
C_{q}^{G}=\left\langle M^{1,2}, M^{1,0}, A_{G}\right\rangle_{+, 0, \otimes, *} \\
C^{G}=\left\langle M^{1,2}, M^{1,0}, A_{G}, S\right\rangle_{+, 0, \otimes, *} \\
S\left(e_{i} \otimes e_{j}\right)=e_{j} \otimes e_{i} \quad\left(M^{l, k}\right)_{i_{1} \cdots i_{l}, j_{1}, \cdots j_{k}}= \begin{cases}1 & \text { if } i_{1}=\ldots i_{l}=j_{j}=\ldots j_{k} \\
0\end{cases} \\
M^{0,0}=(|V(G)|)
\end{gathered}
$$

To obtain a diagrammatic description of the intertwiners of $\operatorname{Qut}(G)$, ie. of C_{q}^{G}, we first find such a description of $M^{1,2}, M^{1,0},+A_{G}$, and then of the operations $0, \otimes, *$.

Bilabeled Graphs
A bilabeled graph is a triple $\vec{F}=(F, \vec{a}, \vec{b})$ where F is a graph (loops allowed but no multiple edges) and $a \in V(F)^{l}, b \in V(F)^{k}$ for some $l, k \geqslant 0$ are tuples of vertices of F (repeats allowed). We refer to $\vec{a}+\vec{b}$ as the left and right (or output and input) tuples of \vec{F}. Sometimes: (l, k)-bilabeled graph

Example: $\vec{F}=\left(K_{4},(1,1),(1,3)\right)$.
How do we draw this?

Abstract Example:

$$
\vec{F}=(F,(1,3,6),(4,2,4,5,6))
$$

Homomorphism Matrices
G a graph, $\vec{F}=(F, \vec{a}, \vec{b})$ an (l, k)-bilabeled graph The G-homomorphism matrix of \vec{F} is the $V(G)^{l} \times V(G)^{k}$ matrix $T^{\vec{F}+G}$ where for $\vec{u} \in V(G)^{l}, \vec{V} \in V(G)^{k}$

$$
\left(T^{\vec{F} \rightarrow G}\right)_{\vec{u}, \vec{v}}=|\{\varphi \in \operatorname{Hom}(F, G): \varphi(\vec{a})=\vec{u}+\varphi(\vec{b})=\vec{v}\}|
$$

where $\operatorname{Hom}(F, G)$ is the set of homomorphisms from F to G, and $\varphi(\vec{a})=\vec{u}$ means $\varphi\left(a_{i}\right)=u_{i} \forall i=1, \ldots, \ell$.

Examples: $\quad \vec{M}^{\ell, k}:=(k_{1},(\stackrel{l}{1, \ldots, l)},(\overbrace{1, \ldots, l)}^{\text {limes }}) \quad l+k \geq 1$

$$
\begin{aligned}
\left(T^{T^{2 k} \rightarrow G}\right)_{\vec{u}, \vec{v}} & =\left|\left\{\varphi \in \operatorname{Hom}\left(K_{1}, G\right): \varphi(1)=u_{i}+\varphi(1)=v_{j} \quad \forall_{i}, j\right\}\right| \\
& =\left\{\begin{array}{lll}
1 & \text { if } u_{1}=\ldots=u_{l}=v_{1}=\ldots=v_{k} \\
0 & \text { o.w. }
\end{array}\right.
\end{aligned}
$$

Thus $T^{\vec{M}^{\ell, k} \rightarrow G}=M^{Q_{1} k}$ for any G.

$$
\begin{aligned}
& \vec{M}^{0,0}:=\left(K_{1}, \phi, \phi\right): \quad T^{\vec{M}^{0,0} \rightarrow G}=(|v(G)|) \\
& \begin{aligned}
& \vec{A}:=\left(K_{2},(1),(2)\right): \quad 2 \\
&\left(T^{\vec{A} \rightarrow G}\right)_{u, v}=\left|\left\{\varphi \in \operatorname{Hom}_{\text {om }}\left(K_{2}, G\right): \varphi(1)=u+\varphi(2)=v\right\}\right| \\
&= \begin{cases}1 & \text { if } u \sim v \\
0 & 0 . w .\end{cases}
\end{aligned} .
\end{aligned}
$$

Thus $T^{\vec{A} \rightarrow G}=A_{G}$.

$$
\begin{aligned}
\left(T^{\vec{F}} \rightarrow G\right)_{u, v} & =|\{\varphi \in \operatorname{Hom}(F, G): \varphi(1)=u+\varphi(4)=v\}| \\
& =2 \cdot \text { \#edges in } N(u) \cap N(v)
\end{aligned}
$$

Remark: This matrix distinguishes the two orbits of non-edges in the Shrikhande graph.

Dur Generators

Operations with Bilabeled Graphs
Loops are kept, multiple edges are removed.
Composition/Product
Given an (l, k)-bilabeled graph $\vec{F}=(F, \vec{a}, \vec{b})$ and a (K, r)-bilabeled graph $\vec{K}=(K, \vec{c}, \vec{d})$, their composition (or product), denoted $\vec{F} \circ \vec{K}$, is the (l, r)-bilabeled graph $\vec{H}=\left(H, \vec{a}, \overrightarrow{d^{\prime}}\right)$ where H is the graph formed from FUK by identifying the vertices $b_{j}+c_{j}$ for all $j \in[k]$, and a_{i}^{\prime} is the vertex of H that a_{i} became under these identifications, and similarly for d_{i}.

Tensor Product
Given an (l, k)-bilabeled graph $\vec{F}=(F, \vec{a}, \vec{b})$ and a (r, s)-bilabeled graph $\vec{K}=(K, \vec{c}, \vec{d})$, their tensor product, denoted $\vec{F} \otimes \vec{K}$, is the ($\ell+r, k+s)$-bilabeled graph ($F \cup K, \vec{a} \vec{C}, \vec{b} \vec{d}$) where $\vec{a} \vec{c}=\left(a_{1}, \ldots, a_{l}, c_{1}, \ldots, c_{r}\right)$ is the concatenation of $\vec{a}+\vec{c}$, and similarly for $\vec{b} \vec{d}$.

Example:

\otimes

(Conjugate) Transpose
Given an (l, k)-bilabeled graph $\vec{F}=(F, \vec{a}, \vec{b})$, its (conjugate) transpose, denoted \vec{F}^{*}, is the (k, l)-bilabeled graph (F, \vec{b}, \vec{a}).

Example:

Schur Product
Given two (l, k)-bilabeled graphs $\vec{F}=(F, \vec{a}, \vec{b})$ and $\vec{K}=(K, \vec{c}, \vec{d})$, their Schur product, denoted $\vec{F} \cdot \vec{K}$, is the (ℓ, k)-bilabeled graph $\vec{H}=(H, \vec{x}, \vec{y})$ where H is the graph formed from FUK by identifying the vertices $a_{i}+c_{i} \forall i \in[\ell]$ and vertices $b_{j}+d_{j} \forall j \in[k]$, and where x_{i} is the vertex that $a_{i}+c_{i}$ became, and y_{j} is the vertex $b_{j}+d_{j}$ became.

Examples:

Theorem: Let $\vec{F}=(F, \vec{a}, \vec{b})$ be an (l, k)-bilabeled graph and $\vec{K}=(K, \vec{C}, \vec{d})$ an (r, s)-bilabeled graph.
For any graph G, the following hold:
I) if $k=r$, then $T^{\vec{F} 0 \vec{k} \rightarrow G}=T^{\vec{F} \rightarrow G} T^{\vec{k} \rightarrow G}$;
2) $T^{\vec{F} \otimes \vec{K} \rightarrow G}=T^{F^{\prime} \rightarrow G} \otimes T^{\vec{k} \rightarrow G}$;
3) $T^{\vec{F}^{*} \rightarrow G}=\left(T^{\vec{F} \rightarrow G}\right)^{*}$;
4) if $l=r+k=5$, then $T^{\overrightarrow{\vec{p}} \cdot \vec{k} \rightarrow G}=T^{F \rightarrow G} \cdot T^{\vec{k} \rightarrow G}$.
"Proof" for (I) when $\ell=k=r=1$

$$
\vec{F}=(F,(a),(b))+\vec{K}=(K,(c),(d))
$$

Fix $u, v \in V(G)$. Then

$$
\begin{aligned}
&\left(T^{\vec{F} \rightarrow G} T^{\vec{k} \rightarrow G}\right)_{u v}= \sum_{w \in V(G)}\left(T^{\vec{F} \rightarrow G}\right)_{u w}\left(T^{\vec{k} \rightarrow G}\right)_{w v} \\
&=\sum_{w}\left|\left\{\varphi \in \operatorname{Hom}_{0}(F, G): \varphi(a)=u, \varphi(b)=w\right\}\right| \\
& \cdot\left|\left\{\varphi^{\prime} \in \operatorname{Hom}_{o m}(K, G): \varphi^{\prime}(c)=w, \varphi^{\prime}(d)=v\right\}\right|
\end{aligned}
$$

$$
=\left(T^{\vec{F} \circ \vec{k} \rightarrow G}\right)_{u v .}
$$

Recall:
Theorem (Chassaniol):

$$
\begin{aligned}
& C_{q}^{G}=\left\langle M^{1,2}, M^{1,0}, A_{G}\right\rangle_{t, 0, \infty, *} \\
& C^{G}=\left\langle M^{1,2}, M^{1,0}, A_{G}, S\right\rangle_{+, 0, \otimes, *}
\end{aligned}
$$

Define the following:

$$
\begin{aligned}
C_{q} & :=\left\langle\vec{M}^{\prime \prime 2}, \vec{M}^{\prime 0}, \vec{A}\right\rangle_{0, \otimes, *} \\
C_{q}(\ell, k) & :=\left\{\vec{F} \in C_{q}: \vec{F} \text { has } l \text { outputs }+k \text { inputs }\right\}
\end{aligned}
$$

Then by the correspondence between bilabeled graph operations and matrix operations, we have that

$$
C_{q}^{G}(l, k)=\operatorname{span}\left\{T^{\vec{F}+G}: \vec{F} \in C_{q}(l, k)\right\} .
$$

Thus our goal is to describe the class C_{q}.

Planar Bilabeled Graphs
Let $\vec{F}=(F, \vec{a}, \vec{b})$ be an (l, k)-bilabeled graph. Define the graph $F^{0}(\vec{a}, \vec{b})$ to be the graph formed from the disjoint union of F and the $(l+k)$-cycle $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}, \beta_{k}, \ldots, \beta_{1}$ by adding edges $\alpha_{i} a_{i} \forall i \in[l]$ and $\beta_{j} b_{j} \forall j \in[k]$.

We refer to the cycle $\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{k}, \ldots, \beta_{1}$ as the enveloping cycle of $F^{\circ}(\vec{a}, \vec{b})$.

Further define $F^{0}(\vec{a}, \vec{b})$ to be the graph obtained from $F^{\circ}(\vec{a}, \vec{b})$ by adding a new vertex adjacent to every vertex of its enveloping cycle.

We will typically just write F^{0} and F^{0}.

$$
\begin{array}{ccc}
F & F^{0} & F^{0} \\
\theta & \theta & \theta \\
- & \varnothing & \theta \\
\cdots & \Theta & \theta \\
- & \otimes & \otimes \\
\diamond & \diamond & \Delta i
\end{array}
$$

We say that $\vec{F}=(F, \vec{a}, \vec{b})$ is a planar bilabeled graph if the graph F^{0} is planar. Equivalently, the graph F^{0} has a planar embedding in which the enveloping cycle bounds the outer face.

We let P denote the set of planar bilabeled graphs and let $P(l, k)$ denote the set of planar (l, k)-bilabeled graphs.

Lemma: If $\vec{F}=(F, \vec{a}, \vec{b})$ is an (ℓ, k)-bilabeled for $l+k \leq 1$, then $\vec{F} \in P(l, k)$ if and only if the graph F is planar.

Theorem: $C_{q}=\varnothing$.
Proof $C_{q} \subseteq P$: The generators $\vec{M}^{\prime \prime 2}, \overrightarrow{M^{\prime \prime}}, \vec{A}$ of C_{q} are contained in P. Thus we only need to show that P is closed under composition, tensor product, and transposition.

Tensor
 H_{1}°
 Product

$P \subseteq C_{q}$
We prove this by induction. The idea is to find a vertex we can carefully remove from $\vec{F} \in P$ to obtain a smaller $\vec{F} \in P$. By induction $\vec{F} \in C_{q}$, and then we show that \vec{F} can be constructed from \vec{F}^{\prime} and some small bilabeled graphs from C_{q}.

Lemma: Let $\vec{F}=(F, \vec{a}, \vec{b}) \in P(l, k)$ with $l+k \geq 1$. Then there exists a vertex $v \in V(F)$ that occurs at least once in \vec{a} or \vec{b} such that its neighbors in the enveloping cycle of F° occur consecutively.

Compose this with:

to obtain the $\vec{F} \in P$ we began with.

$$
(F,(a), \phi)
$$

Let $\operatorname{hom}\left(F_{a}, G_{v}\right)$ denote the number of homomorphisms from F to G that map a to v.

Corollary: Let G be a graph. Then $u, v \in V(G)$ are in the same orbit of $\operatorname{Quf}(G)$ if and only if

$$
\operatorname{hom}\left(F_{a}, G_{u}\right)=\operatorname{hom}\left(F_{a}, G_{v}\right)
$$

for all connected planar graphs F and $a \in V(F)$.

Lemma: For $\ell+k \leq 2, P(l, k)$ is closed under Schur product.
-
-Of

Theorem: Graphs G and H are quantum isomorphic if and only if $\operatorname{hom}(F, G)=\operatorname{hom}(F, H)$ for all planar graphs F.

Proof: (\Rightarrow) If $G \cong_{q} A$, then there is a quantum permutation matrix \mathcal{U} s.t. $\mathcal{U A}_{G}=A_{H} U$. Also $U M^{1,2}=M^{1,2} U^{02}+U M^{1,0}=M^{1,0} U^{00}$ for any quantum permutation matrix. From this we are able to show that if $T \in\left\langle M^{1,2}, M^{1,0}, A_{G}\right\rangle_{t, 0,8, *}$ is given by some expression in $M^{1,2}, M^{1,0},+A_{G}$ and $T^{\prime} \in\left\langle M^{1,2}, M^{1,0}, A_{H}\right\rangle_{+, 0, Q, *}$ is given by the same expression but with each occurrence of A_{G} replaced by A_{H}, then $\mathcal{U}^{\otimes \ell} T=T^{\prime} U^{\otimes k}$ for appropriate $l+k$. By the correspondence between matrix and bilabeled graph operations, we obtain that $U^{\bullet \ell} T^{\vec{F} \rightarrow G}=T^{\vec{F} \rightarrow H} U^{\otimes k}$ for all $\vec{F} \in P(l, k)$. Moreover, we can show that this correspondence is sum-preserving. Since $\operatorname{sum}\left(T^{\vec{F}+G}\right)=\operatorname{hom}(F, G)$, we are done.
(E) Suppose that $\operatorname{hom}(F, G)=\operatorname{hom}(F, H)$ for all planar graphs F. We may assume that G and H are both connected. We will show that there is an orbit of $Q_{u}(G \cup H)$ intersecting both G and H.
By assumption $\operatorname{sum}\left(T^{\vec{F}+G}\right)=\operatorname{sum}\left(T^{\vec{F}+H}\right) \forall \vec{F} \in P$. Since $P(1, O)$ is closed under Schur product, $\operatorname{sum}\left(\left(T^{\vec{F} \rightarrow G}\right)^{\circ m}\right)=\operatorname{sum}\left(T^{\vec{F}^{0 m} \rightarrow G}\right)=\operatorname{sum}\left(T^{\vec{F} \cdot m \rightarrow H}\right)=\operatorname{sum}\left(\left(T^{\vec{F}+H}\right)^{\bullet m}\right)$ $\forall \vec{F} \in P(1,0)$. Thus $T^{\vec{F} \rightarrow G}+T^{\vec{F} \rightarrow H}$ have the same multiset of entries $\forall \vec{F} \in P(1,0)$, and this extends to linear combinations. A little more work shows that if $R=\sum_{i} \alpha_{i} T^{\vec{F}_{i} \rightarrow G}$ is the characteristic vector of an orbit of $\operatorname{Qut}(G)$, then $R^{\prime}=\sum_{i} \alpha_{i} T^{\vec{F}_{i} \rightarrow H}$ is the characteristic vector of an orbit of $Q_{u} t(H)$ of the same size. Pick $v \in V(G)$ and $v^{\prime} \in V(H)$ in these orbits, ie. such that $R_{v}=1=R_{v^{\prime}}^{\prime}$. Now let F be a connected planar graph and $a \in V(F)$. Thus $\vec{F}=\left(F_{1}(a), \phi\right) \in P(1,0)$.

Let $X=G U H$. We will show that $\operatorname{hom}\left(F_{a}, X_{v}\right)=\operatorname{hom}\left(F_{a}, X_{v}\right)$ thus proving $v+v^{\prime}$ are in the same orbit of Quf(GUH).

Let $T=T^{\vec{F} \rightarrow \sigma}+T^{\prime}=T^{\vec{F} \rightarrow H}$. Since F is connected, any homomorphism from F to X that maps a to v has its image contained in $V(G)$, and similarly for v^{\prime} and $V(H)$. Thus

$$
\begin{aligned}
& \operatorname{hom}\left(F_{a}, X_{v}\right)=\operatorname{hom}\left(F_{a}, G_{v}\right)=T_{v} \\
& \operatorname{hom}\left(F_{a}, X_{v^{\prime}}\right)=\operatorname{hom}\left(F_{a}, H_{v^{\prime}}\right)=T_{v^{\prime}}^{\prime}
\end{aligned}
$$

and so we want to show $T_{v}=T_{v}^{\prime}$. Since $T \in C_{q}^{G}(1,0)$ and $T^{\prime} \in C_{q}^{H}(1,0)$, we have

$$
\begin{aligned}
& R \cdot T=\alpha R \\
& R^{\prime} \cdot T^{\prime}=\alpha^{\prime} R^{\prime}
\end{aligned}
$$

where $\alpha=T_{v}+\alpha^{\prime}=T_{v^{\prime}}^{\prime}$. In fact $\alpha=\alpha^{\prime}$ since $R \cdot T$ and $R^{\prime} \cdot T^{\prime}$ must have the same multiset of entries. Thus $v \in V(G)+v^{\prime} \in V(H)$ are in the same orbit of $Q_{u}+(G \cup H)$ and so $G \cong \cong_{q c} H$.

